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Abstract

Regulatory agencies and the scientific community have been engaged in a long-term effort to strengthen health risk assessment pro-
cedures. Recently the momentum of this effort has accelerated to increasing biological information for a variety of toxic compounds and
emphasis on the policy goal of broader characterization of scientific uncertainty (in contrast to providing only a single risk estimate). For
example, the OMB Regulatory Analysis Guidelines [OMB, 2003. Office of Management and Budget. Circular A-4. Available from:
<http://www.whitehouse.gov/omb/circulars/a004/a-4.html/>] suggest that a formal quantitative uncertainty analysis be performed for
economic assessments in support of major regulatory analyses, a process that can utilize both expected values and probability distribu-
tions for risk estimates. Some efforts have been made in the past to provide probability distributions of risk estimates. In this article, we
examine a procedure for constructing probability distributions and expected values of risk estimates using a Bayesian framework. This
approach has the advantage of mathematical soundness and computational feasibility, given the Markov chain Monte Carlo software
tools that are available today. Importantly, the Bayesian framework can serve as a unifying platform for uncertainty analysis in cancer
risk assessment. This paper provides some initial applications of Bayesian methods in quantitative analysis of uncertainty in cancer risk
assessment, including implementation with cancer dose–response data sets for two chemicals. The Bayesian expected risk calculations
provide an approach to generating a central estimate of risk that does not have the instability problems that have often limited utility
of MLE risk estimates.
Published by Elsevier Inc.
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1. Introduction

Using cancer risk assessment to estimate risks from envi-
ronmental pollutants is controversial, in part, because of
uncertainty about shape of the dose–response relationship
between the control group and the lowest tested concentra-
tion. However, environmental decision-making regarding

chemical exposures frequently depends on these estimates
of risks at exposures far below the range of the exposure
in the experiment. Since publication of the important
National Research Council Risk Assessment document
(NRC, 1983), risk assessment has evolved to emphasize
incorporation of more scientific information in dose–
response modeling. However, biologically based modeling
is often limited by the lack of crucial information about
mechanism of carcinogenic action at low doses to which
humans are exposed. For this reason, empirical statistical
modeling of observed dose–response relationships contin-
ues to be a necessary approach for most cancer risk assess-
ments. We anticipate that for the foreseeable future,
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applied dose–response assessments will utilize both descrip-
tive statistical and more biologically based methodologies.
In both cases significant uncertainties may exist.

Currently the risk assessment community is striving to
characterize uncertainty more explicitly and quantitatively
in important assessments. The OMB Regulatory Analysis
Guidelines (OMB, 2003) suggest that a formal quantitative
uncertainty analysis be performed for economic assessment
in support of major regulatory analyses, a process that can
utilize a probability distribution of the cancer risk estimate
and the expected value of risk. The current EPA cancer
guidelines (USEPA, 2005) also recommend that all risk
assessments identify and characterize uncertainties in risk
estimates wherever possible. To go beyond traditional
approaches of uncertainty analysis, such as analysis of sen-
sitivity, a more conceptually consistent and coherent sys-
tem must be developed. The importance of developing
such a system is underscored by the fact that ‘‘uncertainty’’
involves multi-layers of factors even though the ultimate
focus is always about the risk estimate due to exposures
to a suspected carcinogenic agent. For instance, uncer-
tainty of risk estimates could arise from the choice of
dose–response models, assumptions about mode of action,
database, age, gender, etc. The Bayesian framework pro-
vides a natural platform for integrating different factors
in risk assessment. As an initial step towards a broader
uncertainty analysis in the future, in this paper, we focus
on the dose–response modeling aspect, and provide some
insights into the potential of further work.

Currently, the most frequently used EPA approach to
estimate cancer risk at low doses (USEPA, 2005) is based
on a linear extrapolation from a ‘‘point of departure’’
(POD). For animal studies, POD is typically a lower bound
(BMDL10) on the benchmark dose (BMD10) associated
with a 10% extra risk of tumors. Typically, dose–response
in the range of the experimental data is modeled
using the multistage model, P(d) = 1 � exp
(�(q0 + q1d + � � � + qkdk)), where d is dose, and qi’s are
non-negative parameters to be estimated. Then, a straight
line slope from the (BMDL10, BMR) to the origin (0,0)
produces a ‘‘model-free’’ estimate of extra risk. This result
is interpreted as a reasonable upper bound estimate of risk.
The previous EPA approach extrapolated the multistage
model estimate to low doses, but utilized only the upper
confidence limit (rather than the MLE), since MLE esti-
mates of qi’s, in particular q1, can be very unstable at the
boundary of the parameter space and lead to unstable
model-based estimates of low-dose risk based on the
MLE. The ML routine is essentially choosing the best
model, by zeroing out parameters if they go outside their
bound; because of this choice uncertainty results.

As risk assessment has evolved over time, it has been
recognized that there is value in providing, when feasible,
more detailed information to characterize cancer risks,
including distribution of the risk and central estimate of
risk (e.g. expected value, median, mode). An expected value
estimate of risk is often desired for use in cost-benefit anal-

ysis, such as to compare the expected number of cancers in
an exposed population to the expected economic costs of
reducing such risk. All of these efforts require more than
a single number approach to risk assessment.

There have been scattered activities on deriving distribu-
tions of risk estimates from dose–response modeling in the
last two decades. For instance, bootstrap, Monte-Carlo
methods, and asymptotic distribution of log-likelihood
have been used to generate probability distributions of risk
estimate (e.g. Smith and Sielken, 1988; Thompson et al.,
1992; Finkel, 1995; Cox, 1996; California EPA, 2005).

The objective of this paper is to discuss a Bayesian
approach to generating a probability distribution of risk
estimates and deriving central estimates within a chosen
model. To give proper credit, we want to point out that
the posterior mean under the Bayesian framework pro-
posed in this article coincides with an unpublished work
by Dr. Todd Thorslund done in the 1980s. In this work,
an averaged likelihood method was used to generate risk
estimates in simple modeling situations. However, at that
time, the computation was found to be difficult, if not
impossible, when there were multiple parameters in the
model.

The current paper applies formal Bayesian methods to
evaluate the uncertainty in dose–response models.
Although conceptually simple, this approach relies on the
recent advances in computation using MCMC methods.
This analysis takes advantage of the computational power
of WinBugs 1.4.1, free software (Spiegelhalter et al., 2003)
for the Bayesian analysis of statistical models using Mar-
kov chain Monte Carlo (MCMC) methods (e.g. Smith
and Gelfand, 1992; Casella and George, 1992; Chib and
Greenberg, 1995; Brooks, 1998; Gilks et al., 1998).

2. A Bayesian method

Consider a family of probability density or probability
mass functions f(data|q0,q1, . . . ,qk), where q0,q1, . . . ,qk are
parameters. With data fixed, as a function of parameters,
f(q0 ,q1, . . . ,qk|data) is called a likelihood function,
L(q0,q1, . . . ,qk). The data can be in the form of tumor inci-
dence or time-to-tumor data and the likelihood is binomial

Lðq0; . . . ; qkÞ ¼
Y

d½i�: doses

BðNi;XiÞ � Probðd½i�; q0; . . . ; qkÞ
Xi

� ð1� Probðd½i�; q0; . . . ; qkÞÞ
Ni�Xi

;

where B(Ni,Xi) is the binomial coefficient, Ni is the number
of animals in dose group i and Xi is the number of
responses in dose group i.

Let P(q0,q1, . . . ,qk) be the prior distribution of
(q0,q1, . . . ,qk).

Since we do not have prior knowledge about
(q0,q1, . . . ,qk) we assume a flat prior,

Pðq0; q1; . . . ; qkÞ / c; a constant;
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but other diffuse priors could also be used (see Section 3).
Thus, posterior distribution of q0,q1, . . . ,qk is
P(q0,q1, . . . ,qk|data) � L(q0,q1, . . . ,qk) from which the ex-
pected value of a function of parameters q0 ,q1, . . . ,qk can
be calculated.

Of particular interest to us is extra risk for fixed dose d:
R(d) = (Prob(d) � Prob(0))/(1 � Prob(0)), that is a func-
tion of parameters q1,q2, . . . ,qk. In case of multistage
model, for fixed dose d, when starting with the flat prior,
the posterior is proper and the posterior mean of extra risk
E(R(q1, . . . ,qk,d)|data) equals

E½RðdÞjdata�¼

R

. . .

R

Rðq1; . . . ;qk;dÞ�Pðq0;q1; . . . ;qk jdataÞdq0dq1 . . .dqk
R

. . .

R

Pðq0;q1; . . . ;qkjdataÞdq0dq1 . . .dqk

ð1Þ

This is true not only for the multistage model, but also for
other type of models.

As noted above, mean or ‘‘expected value’’ risk esti-
mates are often sought for purposes of analyses to support
decision making (e.g. cost-benefit analyses). In addition to
mean estimates, median estimates can also be developed
using the Bayesian methodology. The calculation of esti-
mate [1] can be easily implemented using WinBugs, as dem-
onstrated in the examples.

3. Examples

Two examples with different dose–response characteristic
are used to demonstrate risk estimation for a chosen model.
The results for both examples are obtained based on conver-
gence of three chains with different initial values, and 10,000
burn-in (i.e. the first 10,000 samples discarded) from 100,000
simulations each, using WinBugs 1.4.1, on a desktop PC,
taking less than 65 s for each of the examples. The resultant
posterior distribution is obtained from the combined
(270,000) samples retained from the three chains. In these
examples, the absolute value of WinBugs density dflat()—a
uniform prior over the whole real line—was used as a prior
for the coefficients in the multistage model. A diffuse normal
prior constrained to be non-negative produced essentially
the same results. These continuous priors do not put point
mass at 0, and if point mass at 0 is appropriate (e.g. for back-
ground rate parameter) a reversible jump algorithm (e.g.
Green, 1995; Brooks et al., 2003) can be used. The doses at
which distribution of extra risk is calculated were chosen
so that mean extra risk would be on the order of 1E�6.
The MLE of extra risk under multistage model at a given
dose and BMD-based (straight line) estimates of extra risk
are obtained by using BMDS software (EPA, http://cfpub.
epa.gov/ncea/cfm/recordisplay.cfm?deid=20167).

Confidence intervals for MLE were derived using para-
metric bootstrap with 10,000 simulations.

3.1. Example 1

Naphthalene: respiratory epithelial adenomas in male
rats (Abdo et al., 2001). The dose–response in this example

is gradual (Table 1). In situations like this, the MLE is usu-
ally stable for small changes in incidence outcomes, as is
illustrated in Table 1 by changing the results of two doses

Table 1
Comparison of extra risk estimates by different methods using original
naphthalene dose–response data and altered data with one tumor moved

Dose Original data One tumor moved

0 0/49 0/49
10 6/49 7/49
30 8/48 8/48
60 15/48 14/48

Extra risk at 5.0E�4 ppm

MLE-based risk 90%
CI

3.5E�6 (9.5E�7;
4.5E�6)

3.5E�6 (1.1E�6;
4.4E�6)

BMD10-based risk
90% CI

3.3E�6 (2.2E�6;
4.4E�6)

3.3E�6 (1.9E�6;
4.4E�6)

Posterior mean 1.9E�6 2.0E�6
Posterior median

90% CI
1.9E�6 (3.3E�7;
3.5E�6)

2.0E�6
(3.7E�7; 3.7E�6)

Probability Density Function of Naphthalene Extra Risk

EXTRA R ISK

D
e

n
si

ty

0 2*10-6 -6 -6 -64*10 6*10 8*10

0
1

0
0

0
0

0
2

0
0

0
0

0
3

0
0

0
0

0

BMP

Probability Density Function of Naphthalene Extra Risk

LOG OF EXTRA RISK

D
e
n
si

ty

-10 -9                      -8 -7 -6                      -5

0
.0

0
.5

1
.0

1
.5

BP

M

B  BMD 
M  MLE  
P  Posterior Mean

B  BMD 
M  MLE  
P  Posterior Mean

a

b

Fig. 1. Probability density function (pdf) of extra risk for naphthalene
example (original data). Panel a in ordinary scale, panel b in logarithmic
scale.
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by one tumor. Estimates obtained by the three approaches
(MLE-based, BMD-based straight line approach and
Bayesian analysis) exhibit little to no difference. The prob-
ability density of risk for the original data is shown in
Fig. 1 (panel a) and is between approximately E�7 and
E�5 (panel b).

3.2. Example 2

Formaldehyde: squamous cell carcinomas in rats (com-
bined data from Kerns et al., 1983; Monticello et al., 1996).
The dose–response is very steep above 6 ppm (Table 2). As
this would suggest, estimates of some of the parameters of
multistage model are on the boundary and the MLE of
extra risk at 1E�3 ppm is unstable. It changes seven orders
of magnitude with small changes in the incidence data. The
Bayesian estimates of extra risk at 1E�3 ppm as well as
straight line, BMD01-based estimates are stable. The prob-
ability density of extra risk for the original data is shown in
Fig. 2 (panel a) and is spread more widely than the first
example (panel b).

4. Discussion

In this article, an application of Bayesian methods to
calculate expected values and probability distributions for
cancer risk estimates is proposed. Two examples given in
this article suggest that the method is insensitive to the
choice of diffuse priors and robust against small changes
in the data. In particular, the Bayesian expected risk calcu-
lations provide an approach to generating a central esti-
mate of risk that does not have the instability problems
that have often limited utility of MLE risk estimates.
Advantages of the proposed model are that the concept
can be easily extended to a more general case, such as
Bayesian hierarchical model with covariates (multi-layer
of factors), and computation is easy to implement. When
several data sets are available for the same chemical, the

posterior from the first data set obtained using flat prior
could be updated using newer data sets.

In addition to using bootstrap methods to generate
probability distributions of risk estimates, a decision-tree
approach has also been proposed by some authors (e.g.
Evans et al., 1994) to provide a set of risk estimates that
can address uncertainty about appropriateness of data sets
and information used to select a dose–response model. It is
interesting to observe that although the two approaches
(resampling and decision tree) for generating probability
distributions for risk estimate seem conceptually quite dif-
ferent, they can be unified under a Bayesian framework.
One can consider each of the pathways in a decision-tree
approach as a single model, and then apply the Bayesian
model averaging concept (e.g. Hoeting et al., 1994; Kang
et al., 2000; Bailer et al., 2005; Morales et al., 2006) to con-
struct a Bayesian posterior distribution (we note that our
approach in this paper considers only the full multistage
model and model averaging approach can also appropri-
ately include different models from the multistage family

Table 2
Comparison of extra risk estimates by different methods using original
formaldehyde dose–response data and altered data with one tumor moved

Dose Original data One tumor moved

0 0/341 0/341
0.07 0/107 0/107
2 0/353 1/353
6.01 3/343 3/343
9.93 22/103 22/103
15 162/386 161/386

Extra risk at 1.0E�3 ppm

MLE-based risk
90% CI

4.5E�14
(0; 6.0E�7)

4.5E�7
(0; 1.7E�6)

BMD01-based risk
90% CI

2.1E�6
(1.8E�6; 2.5E�6)

2.2E�6
(1.8E�6; 3.0E�6)

Posterior mean 6.0E�7 8.0E�7
Posterior median

90% CI
4.3E�7
(3.3E�8; 1.8E�6)

6.0E�7
(4.9E�8; 2.2E�6)
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Fig. 2. Probability density function (pdf) of extra risk for formaldehyde
example (original data). Panel a in ordinary scale, panel b in logarithmic
scale.
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of models). Therefore, a Bayesian framework can offer a
unified platform not only for deriving probability distribu-
tions for a single model, but also an approach to consider-
ing several alternative models. Admittedly, however, the
challenge of defining a set of models to adequately repre-
sent a corresponding sufficient set of plausible biological
alternatives still remains, and may prove difficult and
controversial.

The methods presented here address the probability dis-
tribution of low dose–response for a chosen model. While
the methodology presented here can provide much insight
into behavior of curve fitting extrapolations to estimate
low-dose probabilities, results also serve to emphasize the
fundamental limitations of curve fitting approaches. Signif-
icant advances in understanding low-dose risks will neces-
sarily come from greater biological understanding of
cancer and other toxic events. As this biological under-
standing increases, modeling approaches such as presented
here can play a greater role in quantifying uncertainty in
low-dose risk estimation.

For future research, it would be of interest to compare
the Bayesian procedure with other likelihood-based resam-
pling approaches such as Bayesian bootstrap (Rubin, 1981)
and weighted likelihood bootstrap (Newton and Raftery,
1994). Unlike the original bootstrap, these methods gener-
ate likelihood statements about parameters and thus are
statistically more comparable to our proposed approach.
It is also of interest to provide a more rigorous statistical
procedure for analysis of a decision tree generated proba-
bility distribution.

We believe that risk assessment community should take
full advantages of the fruitful research results in Bayesian
analysis and computational power of MCMC, which have
become available only recently. These recent advances
allow derivation of probability distributions and central
estimates of risk and contribute to meaningfully quantify-
ing uncertainties in cancer risk assessments.

Appendix A. Supplementary data

Supplementary data associated with this article can
be found, in the online version, at doi:10.1016/j.yrtph.
2007.08.002.
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